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We analyze the online learning of a Perceptron (student) from signals produced by a single Perceptron
(teacher) in which both the student and the teacher suffer from external noise. We adopt three typical
learning rules and treat the input and output noises. In order to improve learning when it fails in the sense
that the student vector does not converge to the teacher vector, we use a method based on the optimal
learning rate. Furthermore, in order to control learning, we propose a concrete method for the Perceptron
rule in the output noise model. Finally, we analyze time domain ensemble online learning. The
theoretical results agree quite well with the numerical simulation results.
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1. Introduction

We study the online learning of a single Perceptron' from
signals produced by a single teacher. We assume that both
the teacher and the student suffer from external noise, and
we adopt the Hebbian,? Perceptron" and AdaTron® rules as
learning rules.”’ In our previous paper, we studied a similar
system in which only the teacher suffers from external
noise.>® There have been many other studies that focus on
the case of a single teacher.”'? The main purpose of the
present study is to improve learning when it fails in the sense
that the student vector does not converge to the teacher
vector.!? The results are as follows: When learning fails, the
teacher can be identified using the optimal learning rate. We
can obtain the asymptotic form of the generalization error
using the optimal learning rate for the three learning rules.
Furthermore, in order to control learning, we propose a
concrete method for the Perceptron rule in the output noise
model. Finally, we analyze time domain ensemble learning
and derive the formula of the direction cosine between the
teacher vector and the averaged student vector.

The paper is organized as follows: In §2, the formulation
for online learning is given. In §3 and §4, the learning with a
constant learning rate and that with an optimal learning rate
are analyzed, respectively. In §5, we study the control of
learning, and in §6, we analyze the time domain ensemble
learning. Section 7 is devoted to the summary and discussion.
In the appendix, we list useful integration formulas in order to
derive the differential equations for order parameters.

2. Formulation

We consider the supervised learning of a Perceptron in the
presence of noise. Let J and B be the student and teacher
vectors, respectively. We assume that these are N-dimen-
sional vectors. We also assume that |B| = 1. Let & be an N-
dimensional example vector. We assume that its component
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&; takes £1 and is drawn independently with the probability
P=1)=1—-PE=—1)=1/2. When there is no noise,
the output S generated by the student J for & is given by

S = sgn(J - §), ey

where J - & denotes the inner product of J and &, sgn(x) = 1
forx > 0, and sgn(x) = —1 forx < 0. When there is no noise,
the output 7 generated by the teacher B for & is given by

T = sgn(B - §). 2)

In this paper, we treat the cases in which both the teacher
and student noises exist. We assume that the teacher and
student noises are independent. We consider the output and
input noises. Let Py be the probability of 7 = 1 and Pg be
the probability of S = 1. Since Pt and Ps depend on y =
B-& and x =J - & in the present model, respectively, we
denote them as Pr(y) and Ps(x). Here, J = J/J, and J = |J|
is the norm of J. In the output noise model, these are given
by

1
Pr(y) = S+ kr sgn(y)1, 3)
1
Ps(x) = 3 [1 + ks sgn(x)]. “
In the input noise model, 7" and S are given by
T = sgn[B - (£+¢D)], ()
S =sgnlJ - €+ ), ©)

where ¢ and ¢S are the teacher and student noises,
respectively. Each component ¢ of ¢T is assumed to be
independently drawn from the Gaussian distribution of the
mean 0 and the standard deviation or, and each component
g of &8 is assumed to be independently drawn from the
Gaussian distribution of the mean 0 and the standard
deviation os. Then, Pt and Pg are expressed as

Pr(y) = H(— y>, %)
oT
X

Ps(x) = H(— —>, ®)
os
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where H(y) = f;’" Du and Du = du/~/2mwexp(—u?/2). We
adopt the following learning algorithm for the output noise
model

1 1
t+— ) =J® + —néTF, 9
31+ 5) =90+ 3 ng ©)
and for the input noise model

1 1 S
J<t+ §) I+ e STE. a0
where 7 is the learning rate and F is the learning rule. In the
latter case, the term & in the noiseless case is replaced by
&4 ¢S, because the student receives examples which suffer
from external noises.
We consider the following three learning rules:

Hebbian rule: F =1, (1)
Perceptron rule: F = O(—-T59), (12)
AdaTron rule: (13)

F = |&- J|O(—T9) for the output noise model, (14)

F = |(E+ &5) - J|O(-TS) for the input noise model,
(15)
where ®(x) =1 for x>0 and ®(x) =0 for x < 0. We
define the order parameters Q=J> and R=J-B. In

addition to Q and R, J = 4/0 and @ = R/J are also used.
The generalization error €, is defined by

€ = (O(=S5T))z, (16)

where (-)z denotes the average over examples and noises.
Now, let us consider a way of taking the average over
examples and noises. As an example, let us consider a
function of x, y, S, and T, f = f(x,y,S,T). The average over
noises (f)noise 1 taken using Pr(y) and Ps(x) as

Fhoise = Y Y PrTyPs(S0)f(x.y.8.T),  (17)
S=+1T=+1

since the student and teacher noises are assumed to be
independent. Here, we use the fact that the probabilities of
S==1 and T = %1 are expressed as Ps(Sx) and Pr(Ty),
respectively. See eqs. (3), (4), (7), and (8). The average over
examples & is replaced by the average over x and y. Because
&s are independent random variables, x = Zifigi and y =
> ;Bi&; are random variables and obey a Gaussian distribu-
tion by the central limit theorem. The means, variances, and
covariance for x and y are calculated as (x) =0, (y) =0,
=1, () =1, and (xy) =w. Thus, the Gaussian
probability density for x and y, P(x,y), is given as

1
2741 — w?

X exp |:—

P(x,y) =

2(1 — w?)

Therefore, (f)z is calculated using

(fe= (<f>noise>sample = / dx/ dy P(x, Y)(f Ynoise

= /oo dX/OO dy P(x,y)

x Z Z Pr(Ty)Ps(Sx)f(x,y,S,T).

S==+1T==%1

? +y2 — 2a)xy):|. (18)

19)

Then, € is calculated using

€ = (O(—ST))s
_ / " / dy PG )P — Ps(0)]

+ [1 = Pr(MIPsx)}.

In the next section, for a constant learning rate, we derive
the differential equations for order parameters for both the
output and input noise models, and compare the theoretical
and numerical results.

(20)

3. Constant Learning Rate

3.1 Output noise model
The generalization error €, is calculated as
€ = 1 —2](Tks 4 kas

From eq. (9), we obtain the differential equations for Q
and R:'V

cos H(w). (1)

=20(J - OTF) g + n*(Fg, (22)

@
dr
dR— B -&TF

o (B -OTF)g.

Here, we assume self-averaging.'? Since F is expressed as
FUJ,x,T,S], these equations are rewritten as

(23)

dQ 2 2

T 2 (xTFJ,x,T,Sl)g + n°(F° 1, x,T,Sl)z, (24)
dR

i nYTFU,x,T,S])g. (25)

The equations for J and w are

2

Y O TFUAT.She+ L (P LT, S)e (26)
ar SRR VA

99 _ 1y — wox)TFUx. T, S])
g H ol

(1)772
2J?
The average over noises and examples is calculated using
Ps(x), Pr(y), and P(x,y). By performing the average over x
and y, we get equations for Q, R, J, and w.
In the Hebbian rule, we get the differential equations for
order parameters as

(F*J,x,T,S]) 5. 27)

dR 2

— = nkt4/ —, 28
a = My~ (28)
d 2

o _ 2]nkT\/:a) P, (29)
dr b4

4 = nk 2 + ’ (30)
ar YTy

do nkp /2 5 wn?

O 2wy = 31
dt J ( ) 2J? (3D

These are the same as those in the case in which only
the teacher suffers from noise. This case has been studied
and the differential equations have been solved analyti-
cally.!

In the Perceptron rule, we get the differential equations for
order parameters as
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dR n

— = ——(kr — 0k 32
o «/_( T — wks), (32)
d 2nJ

L. J”_(wkT ko) + e (33)
d.] 2

dt _ (a)kT — kS) + g (34)
dw nkT 2 a)n2

R 1 — el

ar =~ o T T 49

In the AdaTron rule, the equations for order parameters
are given as
drR

J
= = = [(kT—kS)a)+ k1 — a2

2kt 4
— —wcos” (w) |, (36)
T
dQ n 2 2
=nl<-—ks)J J kt(2 — nk:
m U(z s) + nJ7kt(2 — nks)
R w y
X |=——cos  (w)+—V1—w?|, (37)
12 w b4 ]
dJ _n(n nJ
—=—|=z—ks )J+ —kr(2 — nk
Py (2 s) +5 (2 — nks)
| U w y
X [=—=—cosTH(w) + —+V1—w?|, (38)
12 w b/ |
do _ @(1 T
dr T
—¥<eg—/qks—\/1 —a)2>. (39)
3.2 Input noise model
The generalization error €, is calculated as
. w
€, = —COS - = |- (40)
T \/(1 +GT)(1 +Us)

From eq. (10), we obtain the differential equations for Q
and R:'0

d 1

d—?= n((J~(E+§S)T7'">s+Nn2<(E+CS)2F2>s, (41)
dr s

5 = NB-E+ TPz, (42)

Here, we assume self-averaging. Now, F depends on J, x,
T, S, and v, where v = J- &S, Since S = sgn[J(x + v)] =
sgn(x +v), F is expressed as F[J,x,v,T]. The factor
(£+¢5)? in the second term on the right-hand side of
eq. (41) can be calculated as

E+ Y =N+ (258 + @)
=N+ ON°) + Nag, (43)

where we used the fact that N is very large, and & and &5 are
statistically independent.'® Then, the above equations are
rewritten as

do
o 20J{(x + )TF[,x,v, T g

+ 7?1 + o) F2J, x, v, T) g, (44)
5 = 1O+ OTFU.x 0. The, (45)

/O and w =R/J

where u = B - £3. The equations for J =
are

dJ
@ =n{x+ ) TFJ,x,v,T])g

—(1 + o(F2T, X0, T]) =, (46)
E = ; (y+u—ox+ITF[J,x,v,T])g
(1 + o) F2 I, X0, T)g. 47)

2J 27

The average over the teacher noise ¢ is taken independently
of other averages and is calculated using the probability
Pr(y). On the other hand, the average over the student
noise &5 of the quantity A is replaced with Ay =
S0 dx (7 dy Py(u, v)A. Here, the probability distribution
P>(u, v) is given by the Gaussian distribution with (u) = 0,
() =0, W = @)= é and (uv) = a)ag. The average
over examples £ is calculated using P(x,y), as in the output
noise case. By performing the average over examples and
noises, we get equations for Q, R, J, and w.

In the Hebbian rule, we get the differential equations for
order parameters as

R \/E 1 48
t—’) ;m7 ( )
nJﬁ L + (1 +0d) (49)
4
\f i 2]<1+os) (50)
do 1 [2 1—0? o
= (1 +02). (51)

dar V7 ivoz 272

In the Perceptron rule, we get the differential equations for
order parameters as

dR n 1

—=—— | —=—w,/1+02], (52)
dt 27 (w/l + o2 s)

do 277] 0}

— = —J14+ 2] + 17’1 4+ 0d)e,, (53)
dar < r———l+0 s) n s)€g

aJ

— 1+<7S (1+as)eg, 54)
dr \/l—i—aT

dw n l—a) wn

( + 03)éq. (55)

ar V21l 1+ o2 + o2 e

In the AdaTron rule, the equations for order parameters are
given as

dR  nJ /(A 401 +03) — o
d 1+ 0%

©_, 12[ (1+a§)—1]

dr
o I+ o1 +2U§) - wZ], 7
1+ o7

— o1 + 03)eg,  (56)

X |:(1 + oé)eg —

dJ n 2
—=nl|>(+0d)—1
dr g |:2( S) i|
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Table I. Asymptotic values of J and w.
Model Learning rule w* J*
Output Hebbian 1 00
Perceptron 1 00 kt > ks
1 00 (J = /1) kr = ks
kT s kS
— = kr < k
s "\/;kgfk%eg T
AdaTron 0<w* <1 oo or 0
Input Hebbian 1 00
1 V2r(1 Z
Perceptron —_— n n(2 +05) T
Ja+od(+0D) 21— [+ o1 + o))
2
AdaTron O<w* <1 0 os <. [——1,(n<?2)
n
2
0<w* <1 0 os >, /-—1,(n<2)
n
2
0<w' <1 constant os=,/-—1,(n<2)
n
0<ow* <1 00 n>2
12 1
0.95
10 0.9
0.85
8r 0.8
0.75
J 6 w i
0.7
Al 0.65 .
0.6 |- B
X 1
2 :Xxx%x,x—xxx*xxxxxxx)‘xx 0.55 | R
0.5 % 4
O | | | 045 | | |
0 50 100 150 200 0 50 100 150 200
t t
Fig. 1. Time dependences of J and w for output noise model and Perceptron learning rule. n = 1. Curves are theoretical results (RKG) and symbols are

numerical results (N = 1000). Solid curve and +: kr = 0.7, ks = 0.7; dashed curve and x: kt = 0.7, ks = 0.8; dotted curve and *: kt = 0.8, ks = 0.7;
dotted-dashed curve and square: ky = 0.8, ks = 0.8. Left panel, J. Right panel, w.

/(1 +03)(1 + 03) — 0?
x (1+o§)eg——*/( il E )
b4 1+ o7

d
d_c;’:n {1+w2[g(1+a§)—1“

. (58)

y V1 + 021 + 02) — ?

nw 232
— —(1 . (59
(1 +02) 5 (I os)re ). (59)

The asymptotic values of J and w are given in Table 1.

3.3 Numerical results

In this subsection, we give the results of numerical
integrations of differential equations by the Runge—Kutta—
Gill (RKG) method and the results of numerical simulations.

In Figs. 1-4, we show the numerical and theoretical
results for Perceptron and AdaTron rules in the output and
input noise models. The agreements between the numerical
and theoretical results are quite well.

For the Perceptron rule in the output noise model, learning
succeeds for kt > kg, but fails for kr < ks. See Fig. 1. For
other cases, learning always fails. See Figs. 2—4. In Fig. 4,

we show the results of the three cases of os < 4/(2/n) — 1,
os = +/(2/n) — 1, and s > /(2/n) — 1 and confirm that, as

t — oo, J tends to 0, constant and oo, respectively.
In order to improve learning in the case that learning fails,
we consider the optimal learning rate firstly.

4. Optimal Learning Rate

We study the optimal learning rate 7oy, which is
determined by the following relation:'”

v d [d
t>0: —<|+e&])=0.
on \dr

7 is n/J for the Hebbian and Perceptron rules, and 7 for the
AdaTron rule. Since ¢, is a function of w, the relationship is
equivalent to

(60)

v a (d
t>0 —|—w])=0. 61)
on \dr
The differential equation for w is expressed as
d -2 (62)
—w=afj— <7
a =T
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! + + ¥ + -
0.65 i/x R . + o+ 4
] + .
J 0.6 g
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0.5 4
0.45 L 1 I
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t t

Fig. 2. Time dependences of J and w for output noise model and AdaTron learning rule. n = 1, kr = 0.7. Curves are theoretical results (RKG) and symbols
are numerical results (N = 1000). Solid curve and +: ks = 0.8; dashed curve and x: ks = 0.9. Left panel, J. Right panel, w.

22 1
0.95 -
**x*n**x—**w*«*“»—
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1.6 1
J 22080900 00 onong 0.78 )
14 | 0.7 -
0.65 |- E
1.2 b 06 | 4
. 0.55 - R
0.5 % .
0.8 L L L 0.45 L L L
0 50 100 150 200 50 100 150 200
t t
Fig. 3. Time dependences of J and w for input noise model and Perceptron learning rule. n = 1. Curves are theoretical results (RKG) and symbols are

numerical results (N = 1000). Solid curve and +: ot = 0.2,05 = 0.2; dashed curve and x: oy = 0.2, 05 = 0.3; dotted curve and *: o = 0.3,05 = 0.2;

dotted-dashed curve and square: or

0.2

200

=0.3,05 = 0.3. Left panel, J. Right panel, w.

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45

?ﬁ;&ggéﬁﬁﬁﬁééﬁﬁéﬁééﬁéé éééﬁémﬁﬁéﬁmﬁfﬁ%

50 100 150 200

Fig. 4. Time dependences of J and w for input noise model and AdaTron learning rule. or = o5 = 0.2. Curves are theoretical results (RKG) and symbols
are numerical results (N = 1000). Solid curve and +: n =1 (o5 < 4/(2/n) — 1); dashed curve and x: n =2/1.04 (o5 = +/(2/n) — 1); dotted-dashed
curve and square: n = 2/1.01 (o5 > 4/(2/n) — I). Left panel, J. Right panel, .
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Table II. a and b for each learning rule in output and input noise models.
Output Hebbian Perceptron AdaTron
2 kT kT
a kr./ =1 — &? RALANYS [ KT _ 22
T\/; ( ) \/Zr'( ) p )
krk
b ® e, w(eg - Tnswvl - a)2>
Input Hebbian Perceptron AdaTron
2 1 VA + oD+ ad) — o?
a | ———(1-0o? ——(1—-0?) L . 1-a?)
(1 + 02) V2r(1 +a2) (1 + 0%)
1 2 1 2Y _ 2
b ol + (Tg) o + aﬁ)eg 2(] + Ué) a +(7§)7T€g _ Lu\/( + op)( +2tfs) 10}
b4 1+ o7
Table III.  Asymptotic forms of optimal learning rate 7oy and &gy for 7 > 1. €gmin = €z(@ =1).
Output Hebbian Perceptron (kt < ks) AdaTron
~ 1 5 2 /4
Fopt (1) L L VAT 2”7 34
kT 2 kT 4kT(1 - kaS)
ki [T Tk (1 — kskr)\ '
€g.opt \/—%t"” ks %r'/z (T(TST)) kst~
Input Hebbian Perceptron (kr < ks) AdaTron
- T (1 +02)
Topt () V1 +a2\/tfl V2r(1 4+ o) ! T !
o V2 ' Ja+oh(d+oh)—1
: (1 —|—o‘%)(] +0'§) o (1+a%)(l+a§)e‘g . (1+or%)(l+a§){n(1—|—o%)(1+o§)eg—\/(l+a%)(1+0§)— l}f1
g.opt

t
4/(1+03)(1+03) — 1 VA + o)1 +03)— 1

2{(1 + o)1 +ad) — 1)*2

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6

0.55
0.5 ¥ _

0.45 - L I
100 150

200

Fig. 5.

1 ‘ Xx**x%%x%xxxxx*x% 3T
xR
0.95 |- e

ORI

0.9
0.85
0.8
0.75

0.7
0.65 |- E
0.6 |- E
0.55 | 1
0.5 ¥ 1

0.45 - L 1
100 150

200

Time dependence of w for the optimal learning rate. Curves are theoretical results (RKG) and symbols are numerical results (N = 1000). Solid

curve and +: Perceptron; dashed curve and x: AdaTron. For r < 50,7 = 1 and for t > 50, n = fjop. Left panel: output noise model. kr = 0.7, ks = 0.8.

Right panel: input noise model. ot = 0.3,05 = 0.3.

From this, the optimal learning rate #jo, and the differential
equation obtained using fjop are derived as

. a d a’

Nopt = E’ a;a)‘— EB’ (63)
where a and b are given in Table II. It is easily proved that
w — 1 as t — oo, that is, learning succeeds. Let us define
€y = €gmin — €g(w), where €gmin = €5(w = 1). Asymptotic
forms of fjop: and €gopr, Which is &, evaluated for ?fopl, are
shown in Table III. In Fig. 5, we show the numerical and
theoretical results for w in the Perceptron and AdaTron rules.
In the theoretical calculation and numerical simulations, we
used the asymptotic forms of 7o, as 7. We find that the
agreements between the theoretical and numerical results are
fairly well.

5. Control of Learning

In the output noise model for the Perceptron learning rule,
learning succeeds for kt > kg, but fails for kr < kg. This is
a rather surprising result. Let us consider the situation of
ks = a > kr, where a is some positive value less than 1. In
this case, learning fails. If kg is decreased from a with kr
fixed, learning becomes better and, at ks = kr, it succeeds.
That is, when the student noise is increased, learning
becomes better and when it is decreased, learning becomes
worse. We can use this fact to control learning by inten-
tionally reversing the student’s output. Suppose that learning
fails. We introduce the control parameter ksc and reverse
the student output with the probability (1 — ksc)/2. Then,
the net probability that the student’s output is reversed is
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0.8 [t g
0.75
0.7
0.65 - B
0.6 B
0.55 - B

0.5 ® 4

045 | | | |
0 200 400 600 800 1000

t

Fig. 6. Time dependence of J and w for output noise model and Perceptron learning rule. kt = 0.7,ks = 0.9. In this case, k{- = 7/9. We reverse the
student output with the probability (1 — ksc)/2 for ¢ > 50. Numerical simulations (N = 1000). +: ksc = 8/9, x: ksc = 7/9, square ksc = 6/9, Left

panel, J. Right panel, .

(1 — ksksc)/2. That is, the substantial parameter for the
student is k = ksksc, instead of ks. If kt > ksksc, learning
succeeds. Suppose that we observe the generalization error
€, by decreasing ksc from 1. When ksc reaches its critical
value k5., €, reaches its minimum value €g ;. The critical
value is given by

kt

%

ke = P (64)

S

For ksc < k§o, €g is constant and is €gpyin. Thus, k- is

estimated by identifying the value at which €; becomes con-

stant as ksc is decreased. On the other hand, €g i is given as

1 — krkski. 11— K2

€9 min = ) = 5 -

(65)

By numerically measuring k§- and €gmin, We can estimate
both ks and kr using egs. (64) and (65). We show results
of numerical simulations in Fig. 6 and find that when ksc
becomes smaller than the critical value k{- = 7/9, learning
succeeds.

6. Time Domain Ensemble Learning

Now, we consider another method of making learning
successful when it fails. The method is time averaging.
Previously, we formulated it when only the teacher suffers
from external noise.”” We extend the theory to the present
case in which both the teacher and the student suffer from
external noise. Let us briefly explain the formulation of time
domain ensemble learning.

We consider a two-time-correlation function g¢(z,s) =
J(@) - J(s).'” The differential equation for (¢, s) with respect
to s for t < s is given by

dq(t, s)
T = WO ETOF ),
output noise model, (66)
aq(t,
qés D W+ TOF ),
input noise model, 67)

- P S s
where x| = J(¢) - & and v}, = J(1) - £,. & and & are a sample
and a student noise given at a time s, respectively. ()g,

denotes the average over samples and noises at a time s, and
F(s) denotes F estimated at a time s. _

We define the time-averaged student vectors J@®) and J(©)
as follows:

_ 1 &
Jo =+ ;J(t + 1), (68)
= 1 & L& I+
J(f)=E;J(f-l-li)—E;—J(t_'_ti), (69)
where t; < t, < --- < tg. The order parameters are defined
as follows:
_ _ 1K
R =B-J() = ; R(t + 1), (70)
— - 2
0 =T =5 gt +1t+1)
i<j
1 & 5
+F;J(I+ti), 1)
a0 = 72)
o(t) = —=,
Vo)
= ey 1 & ~
R(t) EBJ([): E;Bj(t+tt)
1 K
=D olt+), (73)
i=1
A R (G
O =J0r =5 ; J(t +1)J(t + 1) x Y
5@) = R® (75)

Vo

We derive the asymptotic expressions for w(¢) and (1) as

t — oo for a finite K, and discuss the efficiency of time
domain ensemble learning.

Now, we derive differential equations for g(t,s) with

respect to s(>1¢) in both the output and input noise
models. Then, in order to obtain the asymptotic forms of
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@ and @, we study the asymptotic behaviors of g(z + ¢;,
t+1t) and §(t + t;,t + 1;), where 4(t,s) = q(t,5)/(J([)J(5)).
In the next subsection, we give a differential equation only
for ¢(t, s).

6.1 Differential equations and asymptotic behaviors
6.1.1 Output noise model

Now, let us study the output noise model. The differential
equation for ¢(z, s) is

oq(t, s)
os

= nJ ()X {Pr(y) F+(s)
— (1 =Pr(YNF ()}t s, (76)

where F _(s) are F(s) estimated for T(s) = 1 and T(s) = —1,
respectively. That is, F(s) = F[J(s),x,T(s) = —H,E(s)]
and F_(s) = F[J(s),x],T(s) = —1,5(s)]. Here, xj =J(s) -
& and y;=B-§. ()u, denotes the average over the
Gaussian distribution P3(x},x],ys) of xi, x}, and y, with
() = (1)) = (5) = 0, () = (%) = 07) = L. {xix)) =
4(t,s), (xlys) = w(t), and (xlys) = w(s). The initial condition
for this equation is g(z, 1) = J(1)*.

By performing several integrations in eq. (76), we obtain
the differential equation for each learning rule. In the
Appendix, we list the integrations used when the differential
equations are derived. We omit the details of the calculation
and give the resultant differential equations.

In the Hebbian rule, the differential equation for g(z,s)

is

daq(t, 2

q(4,5) = krn,/ —R(t) for s > t.
os T

The solutions for R, J, and g with the initial conditions
R(0) =0, J(0) =1, and ¢(t,t) = J(@@)* are

2
R(1) = nkry/ =1,
T
2
J@) = \/1 + r]2t(1 + —k%t),
T

qlt,s) = an\/%R(t)(s — )+ J@ fors >t (80)

(77

(78)

(79)

From these solutions, it follows that lim,_, 5(1‘) =1.
In the Perceptron rule, the differential equation for g is
oq(t, s k
qt,s) _ krn R(t) —
as V2 2 J(s)

In the AdaTron rule, the differential equation for g is

daq(t, 1 — k2
q(ats 9 &[ S eg<s)}q(t,s>

ks S
+- R®J(s)\/1 — w(s)* for s > 1. (82)

6.1.2 Input noise model
Now, we study the input noise model, where Pr(y) =
H(—y/or). Then, we obtain

UL nJ(r)((xi - vi){H(— ”) Fis)
as oT

—H(&>J-'(S)}> )
oT X4, Vs5 V5, U3

nks q(t,s)

for s > t.

81)

(83)

where  Fo(s) = F[J(s),x},v;, T =+1] and F_(s)=
FLJ(@s), x5, v), T = —1]. Since & and Cf are statistically
independent, the average of the quantity A, (A)y sy, vt
is calculated using the product of Ps(x!,x!,y;) and
P,(v%,v8). Here, P,(v,,v) is the Gaussian distribution
with (v)) = (v¥) =0, ((v))*) = ((»)*) =02, and (V}V) =
Uéé(t, s).
For the Hebbian rule, the differential equation for g(, s) is
aq(t, s) 1
i at oD
This equation and the equations for other order parameters
for the input noise model are obtained using those for the
output noise model replacing kr by 1/\/l+—o% and n? by
n*(1 + o2). Therefore, we obtain lim,_, o &(1) = 1.
In the Perceptron rule, the differential equation for g

is
) 0 [ RO 4(t.5)
= — /1402
s m[m ViTes J(s)}

R(). (84)

fors >t (85)
In the AdaTron rule, the equation for ¢ is
dats) 1 A +0d1 +0d) — w(s?
o = T Rays) ~
os b4 1 +o1
—n(1 + Ug)q(t, s)eg[w(s)] for s > 1. (86)

6.2 Asymptotic behavior _

Now, let us derive the asymptotic forms of @(¢) and @(r).
In order to evaluate them, we have to solve the differential
equations for ¢(t,s). These equations have the following
form:

d
75 49 = f(9)q(t,5) + 8(1, 5). 87)

This is easily solved and we obtain for #; < 1,

qit+t,t+ 1)

1h—1
Z{J(t+l‘1)2+/ drgt+tn,t+t+1)
0

X exp[—/fduf(u+t+t1)i|}
0

xexp[/z_ldvf(v+t+t1)] (88)
0

Note that g(z,s) is the product of the function of ¢ and
that of s. For the Perceptron rule, f(s) and g(t,s) are as
follows:

nks 1
fls)=— N
n,/1+0§ 1
fls)= —7\/5 m

krn
g(t,s)= ER(I)

n  R@®

gt,s)= Eﬁﬁ%

On the other hand, for the AdaTron rule, these functions are
as follows:

for output noise model, (89)

for input noise model, (90)
for output noise model, (91)

for input noise model. (92)
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. Thus, it follows that, as t — oo, J(t) = J*, w(t) — o*,
[a)(s)]} f(@® — f*, and g(t + o, t + B) — g* for arbitrary constants
o and B. When learning fails, in both the output and input

f(s) = —n{kT;kS — k—Tcos

for output noise model,  (93) ;e models, for the Perceptron rule, these limiting values
f(s) = —n(1 + 03)eglw(s)] are all finite, but for the AdaTron rule, J* and g* are finite or
for input noise model, (94) 0 or oo depending on the parameters. Then, we obtain for the

Perceptron rule

k
g(t, ) =n ;TR(t)J(S)\/ 1 — w(s)® lim g(t+ 11,1 + 1)

for output noise model,  (95) [(J*) n f*] explf (12 — 1)] — ]T* ©7)
. J oD+ 02) — [P |
g(t,s) = = R()J(s) - For the AdaTron rule, lim,_ ~ q(¢t + t1,¢ + #;) takes finite
T 1+ o7 or 0 or co. Thus, we consider two cases separately in the
for input noise model. (96) following subsections.

6.3 Perceptron learning rule
Let us consider the Perceptron rule. In this case, J* and g* are nonzero. Then, we consider @(f). When t — oo, we
obtain

lim R(f) = lim — ZR(H— ) =R = J*o* (98)
=0
lim () = 5 | 0" + £ explrc — 11 - il (©9)
TR fpf’ Kf*K'
. J*w*
lim o() = . (100)
o Z[U*)Z ]ex o=~ K18 G
P P ’ K f~ K
In the output noise model, asymptotic values are calculated as
nks
* , 101
f'== (101)
o Mkt
= ——R¥, 102
8 = Jom (102)
g*
= = (J*w*). (103)
In the input noise model, asymptotic values are calculated as
«__M/1+03
=" 3 104
/ V2mJ (109
=R (105)
V27(l + o3)
= (J*0*)> (106)
f*
Thus, we obtain'®
lim gt + 1.1+ 0) = U@ + [1 = @) ]expl (22 — )]}, (107)
lim O(1) = (J*)? <(w*>2 —[1 = (@] {1 + 2 D explf (G — n)]}) (108)
i<j

Therefore, we obtain the asymptotic form of the overlap between the teacher vector and the averaged student vector in both
the output and input noise models as

(,()*

lim @(1) = : (109)
(@) + —[1 (w*)2{1+ Y explf (r,—r,)]}

i<j

6.4 AdaTron learning rule _
In this subsection, we consider the AdaTron rule. We consider @(7). When t — oo, we obtain
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=00

=1
= 2
li H=— lim ————
Hm O = 17 Xj:i“olo Ji+mii+1) K

For the AdaTron rule, g(z,s) is expressed as

= 1
lim R() = lim — > o+ 1) = o,
— 00 -

K
(110)
q(l+l[,l+tj) +l (111)
8(t,s) = R()J(5)glw(s)]. (112)

Thus, we obtain

I —1
im —— = lim +/ dr
= Jt+ 1)t +1n) oolJiE+R)  Jo
) —1
X exp|:/ dvf(v+t+t1):|
0

q(t+ 1,1+ 1) i {J(I—Fh)

= |:B(l1, ) + /__ dtB(r + 1, tz)w*g(a)*)exp(—f*t)] explf*(ta — )]
0

Here, we define

J(+t
B(t;,1;) = lim @+ n)

. 114
=00 J(1 + 1) (o

This is calculated as follows. The equations for J(¢) and w()
have the following forms:

J+t+1)
J(t+ 1)

w(t+tl)g[w(r+t+t1)]e><p[—/ duf(u+t+t1)”
0

(113)
From this, B(t1, ;) is expressed as
1 —1
B(t), 1) = Ilim exp{ - f drplo(t + 1t + tl)]}
— 00 0
=exp[—¢*(t — 11)], (119)

where ¢* = ¢(w*). Therefore, we obtain

KON qt + 11,1 + 1)
o 0@, O S (EN V(BT
dw w'g(@")] = w'g(@)
do = )t — )] 1 = .
& Y(w). (116) expl(f* — @)1 11)]|: pe —f*} pr——
By solving eq. (116), we obtain @ = w(f). Using this (120)
solution, J(¥) is given by Then,
‘ = 2 y . w*g(w*)
J(@) = J(0) exp{ / dr’ gle(t")] } 17y Jim 00 = 3 expl(f* = ) — 1) [1 T f*]
0 i<j
Thus, K ; 1 wié(w**) % (121)
Jatm) _ { /+ ot o] (t,)]} ™ biai vt
= expy — 1)
YN p » us, we obtain
=exp{—/2_ldt¢[w(r+t+t1)]}. (118)
0
= o*
;l—lglo o) = (122)

i<j

Now, we calculate relevant asymptotic values. First, we
treat the output noise model and obtain

*__i *_l_k%>
f*= T <eg ) (123)
k
§&=n ;T\/l — (@), (124)
L [1—K n 1
=il (Gn)
X [e; - %w*,/l - (w*)2]}, (125)

where e; = ¢,(*). Now, we estimate w*g(w*)/(¢* — f*).
From dw/dt = 0, we obtain

2 >k~ >k
5 D expl(f = ¢~ t,-)][l kG )] +

K—lo'go) 1
K ¢"—f* K

¢ —f*

k 2 krk
T = (@) = Lol e — 58 0 /1 — ().
b4 2 £ b4
(126)
From this, we obtain

€& = 2k [1-(1—"7"5)@*)2]\/1—@*)2. (127)

Tnw*

Thus, we obtain

(128)

Therefore, we obtain
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w*g(w*) 2
= (") (129)
¢>k _f*

Next, in the input noise model, we obtain
[*==nl+03)e;, (130)
Ao+ -

&= 3 , (131)
b4 1 +o7
« n(l + o3)
ooty
o o [+ 0h)(1 +0d) — (@)
x [ (14 05)€, — (10D
(132)

From dw/dt = 0, we obtain

n[l — (@) + g a+ oé)(w*)z}

Jatohi+oh — @y
« _

w*(1+ a3)’e;.

(1l + 02) )
(133)
Thus,
* * g*
o - == (134)
w
Therefore, we obtain
VD) _ (w2, (135)
¢ —f*

By substituting the asymptotic values calculated above into
egs. (120)—(122), we obtain in both the output and input
noise models

qi+t,t+n) L, s &
o J(+ I+ 1) @)+l =@) ]eXp[ o t‘)}’ (136)
Jim 0 = (@) + 2 [1 = (@ )2]{1 += §i<j exp[— iU ri)] } (137)
= w*
lim &) = (138)

1 2 o*
(@) + 1 = (@] {1 +2 ZeXp[—%aj - t,-)] }

i<j

In the above two subsections, we obtained the asymptotic forms of @ for the Perceptron rule eq. (109) and ® for the
AdaTron rule eq. (138) as r — oo in both the output and input noise models. These two quantities are expressed by one

formula as
~ "
oK) = (139)
1 2
(") + E[l — (*)’] {1 tg ; exp[—a(t — ti)]}
where a = —f* for the Perceptron rule and a = g§*/w* for the AdaTron rule.

Now, let us consider the behavior of this quantity @(K) as a function of the number of students, K, used for the average, in
both the output and input noise models. We assume that #; = i x At. Then, the summation in &(K) is calculated as

> expl—a(ty — t)] =

o exp(aAr) — 1 {

Therefore, we obtain

- 1 —exp[—aAHK — 1)]} (140)

exp(aAr) — 1

Cl)*

oK) =

(141)

(") + l[1 - (w*)2]<1 + E;{K —1
K Kexp(aAf) — 1

Thus, as K — oo, we obtain
lim &(K) = 1.
K—oo
That is, the direction of the averaged student vector tends to
the direction of the teacher vector as the number of averaged
student vectors increases.

(142)

6.5 Numerical results

In this subsection, we give the results of numerical
integrations of differential equations by the RKG method
and the results of numerical simulations.

1 —expl—aAi(K — )] }>
exp(aAtr) — 1

We show the time dependence of ¢(z,s) and the K
dependence of @(K) in the output and input noise models for
the Perceptron and AdaTron rules, in Figs. 7 and 8§,
respectively. The theoretical results agree with the numerical
simulation results quite well.

7. Summary and Discussion

In this paper, we studied the supervised online learning
of a Perceptron using the Hebbian, Perceptron and AdaTron
learning rules in the case in which both the teacher and the
student suffer from output or input noise. We mainly focused
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on the case in which learning fails in the sense that the student
vector does not converge to the teacher vector. To make
learning successful, we investigated the optimal learning rate,
the control of learning, and time domain ensemble learning.

First, we summarize the results in the case of a constant
learning rate. For the Hebbian rule, learning succeeds in both
the output and input noise models. For the Perceptron rule,
learning fails when the student noise is smaller than the
teacher noise in the output noise model, whereas it always
fails in the input noise model. For the AdaTron rule, learning
always fails in both the output and input noise models.

Next, in the case of the optimal learning rate, we proved
that w — 1 as t — oo and derived asymptotic forms of the
optimal learning rate and the generalization error in the three
learning rules and for the output and input noise models.
When learning fails for constant learning rates, we compared
the numerical and theoretical results obtained using the
optimal learning rate and found a fairly good agreement
between them.

A,

Ch

1 UomootoottoooffgEgooogoogBogotooyaons

08 L1 *Xx**)(**X;('%'X'X*X*****XX*x*X*Xx*xx**xx*'*
8 ik -

+ 4
+ + FHy+ 4 + T+ T+ 4+
+T 4y +T + + +

q(t’ S) 06 l‘,y + 4
>\<‘>< X * x
04| KX XXX XK X XXX XX XY x"
02 L L L L L L L L
0 50 100 150 200 250 300 350 400
N
Fig. 7. Time s dependence of §(t,s) for s > ¢. t = 10. n = 1. Curves are

theoretical results (RKG) and symbols are numerical results (N = 1000).
Solid curve and +: Perceptron for output noise; dashed curve and x:
AdaTron for output noise; dotted curve and *: Perceptron for input noise;
dotted-dashed curve and square: AdaTron for input noise. For output
noise model, kr = 0.7 and ks = 0.8. For input noise model, or = 0.3 and
os = 0.2.

We also studied the control of learning. For the Perceptron
rule in the output noise model, it turned out that learning
fails if the student noise is smaller than the teacher noise.
Therefore, it is expected that we could make learning
successful by reversing the student’s output intentionally. By
numerical simulations, we confirmed that this method works.
Furthermore, we proposed the method to identify the noise
parameters kp and kg.

Finally, we studied time domain ensemble learning. In the
present model, even if learning fails, w converges to a
constant value which is less than 1. This implies that the
student vector rotates around the teacher vector with a
constant angle. Thus, by taking the average of the student
vectors at different times, it is expected that learning
succeeds. According to the method developed in our
previous study,” we analyzed time domain ensemble
learning. We found that the formula of the direction cosine
between the teacher vector and the averaged student vector
can be expressed by the same formula, as in the case in
which only the teacher suffers from noise using the terms of
the differential equation of ¢(z,s). We performed numerical
simulations for §(¢,s) and &(K) and confirmed that the
numerical and theoretical results agree quite well.

Next, let us discuss the results in this paper. Let us
compare the convergence speed of learning. If noise does not
exist, the asymptotic form of &g,y is expressed as &g opr X
+~1/2 for the Hebbian rule and € opt X t~! for the Perceptron
and AdaTron rules, so that the convergence speed of
learning is higher in the Perceptron and AdaTron rules than
in the Hebbian rule.” On the other hand, these behaviors
change when both the teacher and the student suffer from
noise. In the output noise case, the convergence speed of
learning is higher in the Hebbian and Perceptron rules than
in the AdaTron rule, whereas in the input noise case, it is of
the same order for all three rules.

The present results include the situation in which only the
teacher or only the student suffers from external noise. The
former case has been studied,>® and the results are obtained
by putting ks = 1 or o5 = 0. The results of the latter case are
obtained by putting kr = 1 or o = 0. For example, we note
that learning succeeds for the Perceptron rule and output
noise model, as seen from the Table I by putting kr = 1. As

o (K) , o (K)

08 ./ 4
075 F / .

07 g

065 | | | | | | | | | 093 | | | | | | | | |

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
K K
Fig. 8. K dependence of &(K). n = 1, At = 0.1. Curves are theoretical results and symbols are numerical results which are the averages of 10 samples

(N = 1000). Solid curve and +: Perceptron; dashed curve and x: AdaTron. Left panel: output noise model, kt = 0.7, ks = 0.8. Right panel: input noise

model, oy = 0.3,05 = 0.2.
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a result, we find that the learning speeds and exponents of
flopt and €g op¢ are the same in the three cases in which only
the teacher noise exists, only the student noise exists, and
both the teacher and student noise exist.

Appendix: Useful Integration Formulas

We list useful integration formulas in order to derive
differential equations for order parameters.

In the following formulas, ¢ and b are real constants
unless otherwise noted:

/OO DxH(ax+b):H<b>, (A1)

o0 1 + Clz

/ Dx H(ax)H (bx)
1 1 4 ab

= —- — —CO0S R (A-2)

2 2 (14 a®)(1 +b%)

/ Dxx*H (ax)H(bx)
1 1 ab

_ -1

=~ ———cos
2 2m V(L +a?)(1 + b?)

ab2 + a* + b?)

+ , A3
27(1 + a®)(1 + b2)+/1 + a% + b? (&-3)
o0 1 a
DxH(ax) = —cos™' | —
/0 (@) 2z («/ 1+ a2>
1 1 1 —a (A4)
=———cos | ——|, .
2 2n 1+ a?
o0 1 (1
/ DxH(ax)=—tan” (-] a >0, (A-5)
0 2 a

where Dx = dx/«/ 27 exp(—x2/2), Hx) = fxoo Dt, and cos™!(x)
and tan~!(x) are principal values.

D
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